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TIME SERIES ANALYSIS USING FRACTAL THEORY 

 

Abstract. Financial markets have become a center of attention and a field of study for over a 

century, especially nowadays when there is an abundance of data about them, however, behavior of 

financial markets still stays as mystery and a field that is rife with unpredictability and uncertainty. There 

are many methods and techniques for analyzing time series data. Due to the fact that prices are formed 

by decisions made by millions of people across the planet the price in itself holds the reflection of all of 

those decisions which itself is a natural process. Therefore, we can look at the financial data as a fractal 

object and analyze them. Method that has been primarily used to analyze time series is fractal dimension 

which we can use to measure of the time series, in other words, we can measure how correlated is the 

time series and thus have an opinion about its future behavior. As we later find out, fractal dimension 

provides interesting insights into the time series and most importantly, it is a method that can analyze 

pictures and thus it is not restricted by data formats.  
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დროითი მწკრივების ანალიზი ფრაქტალური თეორიის გამოყენებით 

 
აბსტრაქტი. ფინანსური ბაზრები საუკუნეზე მეტი ხნის განმავლობაში მოექცა 

ყურადღების ცენტრში და გახდა კვლევის სფერო, განსაკუთრებით დღეს, როდესაც მათ 
შესახებ უამრავი მონაცემი არსებობს, თუმცა ფინანსური ბაზრების ქცევა კვლავ 
საიდუმლოდ რჩება და არაპროგნოზირებადობითა და განუზღვრელობით ხასიათდება. 
არსებობს მრავალი მეთოდი და ხერხი დროთი მწკრივების მონაცემების გასაანალიზებლად. 
ფინანსურ ბაზრებზე ფასები ფორმირდება მილიონობით ადამიანის მიერ მთელს 
პლანეტაზე მიღებული გადაწყვეტილებებით და თავისთავად წარმოადგენს ამ 
გადაწყვეტილებების ერთგავრ ანარეკლს, ეს კი თავისთავად ბუნებრივი პროცესია. აქედან 
გამომდინარე, ჩვენ შეგვიძლია განვიხილოთ ფინანსური მონაცემები, როგორც 
ფრაქტალური ობიექტები და გავაანალიზოთ ისინი. მეთოდი, რომელიც ძირითადად 
გამოვიყენებთ დროითი მწკრივების გასაანალიზებლად, არის ფრაქტალური განზომილება, 
რომელიც, შეგვიძლია გამოვიყენოთ  დროითი მწკრივების გასაზომად, სხვა სიტყვებით რომ 
ვთქვათ, შეგვიძლია გავზომოთ რამდენად კორელირებულია დროითი მწკრივი და ამით 
გვქონდეს მოსაზრება მის მომავალ ქცევაზე. ფრაქტალური განზომილება გვაძლევს 
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საინტერესო შედეგებს და რაც მთავარია, ეს არის მეთოდი, რომელსაც შეუძლია სურათების 
ანალიზი და, შესაბამისად, ის არ არის შეზღუდული მონაცემთა ფორმატებით. 

საკვანძო სიტყვები: განუზღვრელობა, დროითი მწკრივები, ფრაქტალი, ფრაქტალუ-
რი განზომილება, ავტოკორელაცია, ჰარსტის ექსპონენტი 

 

JEL კლასიფიკაცია: C1, C22, C32, D81 

 

Introduction and review of literature 

In the conditions of modern uncertainty (Bedianashvili, 2023) the creation of confrontational 

global factors (Papava, 2022) gives economic processes a high degree of complexity, which requires the 

use of new tools when considering the dynamic aspect. This problem is particularly apparent in relation 

to economic time series of a different nature.  

       Times series analysis has become more and more popular after development of financial markets 

which always requires up to date information on the future behaviors of financial products encompassing 

exchange rates, options, futures, stock prices, crypto currencies and so on. Some aspects of this problem 

in various works.  

       The data about these time series can exist in different forms and formats such as Excel files, text or 

pictures. Having data in excel format makes it very easy to analyze, however, not all the data is preserved 

in such a format. Fractal analysis of time series allows analysis of pictures which makes it very useful 

when data is only available in picture formats. It is almost impossible to analyze such time series with 

traditional methods. Conducted analysis show that fractal theory can provide an estimate for correlation 

in time series and can be used to analyze data that is only available in picture format.  

          In this study, time series has been transformed into fractal objects and further analysis is done with 

Hurst’s exponent. Furthermore, autocorrelation function (ACF) is applied to the analyzed data and serves 

as a well trusted and approved method for evaluating relationships in data. 

          The first time when Mathematics was used to analyze financial markets dates back to year 1900 

when Louis Bachelier used mathematics for analyzing government bonds and other financial data 

(Mandelbrot, 2006). Fractals have been highly introduced by Benoit Mandelbrot in analysis of financial 

data. According to Mandelbrot “Price movements do not follow the well-mannered bell curve assumed 

by modern finance” and we can easily observe that by looking at time series data of exchange rates, 

option prices, cryptocurrencies, etc. Method that has been primarily used to analyze time series is fractal 

dimension which, as Mandelbrot says, is a numerical measure of the “roughness” of an object. We can 

use this concept to measure the “roughness” of the time series, in other words, we can measure how 

correlated is the time series and thus have an opinion about its future behavior. Despite that, Harold 

Edwin Hurst suggested a method cold Rescaled Range Analysis to analyze long term correlation in time 

series data. Hurst’s exponent that was invented by Harold Edwin Hurst can be used in combination with 

fractal dimension to measure autocorrelation in time series data. In this paper, both of these method have 

been used to estimate autocorrelation in time series data along with standard autocorrelation function to 

validate the results. In the field of applying fractal theory in economic research, interesting works of 

other authors can also be distinguished (for example, Hudson, 2006; Hurst et al, 1965; Kantelhardt, 2008; 

Kapecka, 2013; Lunga, 2018; Mandelbrot, 1997; 2002; 2004; McCauley et al, 2007; Mkhatvrishvili et 

al, 2019; Nunes et al, 2011; Pipia et al, 2020; Phrangishvili et al, 2023; Preis et al, 2011; Takayasu & 

Takayasu, 2011; Taylor, 2018).  
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Methodology and methods 

This article used general and specific research methods such as fractal theory, econometrics, analysis, 

synthesis, induction, deduction, scientific abstraction, and comparative analysis. 

 Theoretical Generalizations, and Results 

The paper analyzes 2 time series: the exchange rate and the price of the cryptocurrency Bitcoin. Daily 

increment of the exchange rate of the US dollar to the GEL from July 23, 2014 to May 30, 2022 was 

selected to be analyzed. The behavior of the exchange rate is determined by the action of the forces of 

demand and supply on it, which is shaped by the decisions made by thousands of people.  Let’s consider 

the exchange rate of GEL/USD.  

          As can be seen from Figure 1, the analyzed time series indicate the presence of positive 

autocorrelation, which is obvious by the tendency of the autocorrelation function to decay step by step 

along with the time lag (See Figure 1). It is worth noting that the partial autocorrelation function (PACF) 

has only one significant value (a spike), which is significantly higher than the specified threshold value, 

indicating the existence of first-order autocorrelation (Chan, 2008).  

 

Figure 1: Autocorrelation and partial autocorrelation functions of the  

USD/GEL exchange rate 

 

Source: National Bank of Georgia, analysis is performed in software R 

ACF is a correlation function of a time series with its lagged values. If we denote lag by k, the ACF 

formula can be expressed by the following equation (Ananiashvili, 2014): 

ACF = 
𝐶𝑜𝑣 (𝑢𝑡,𝑢𝑡−𝑘) 

√𝐷(𝑢𝑡)𝐷(𝑢𝑡−𝑘)

   where 𝑢𝑡 is a time series, D  - dispersion, k=1, 2, ….t 

Similarly, PACF is a ACF in a time series where all the influence of any other lag is eliminated 

(Ananiashvili, 2014).  
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          The second time series represents the daily price change of the cryptocurrency Bitcoin from 

October 31, 2016 to June 9, 2022. 

Figure 2: Bitcoin daily price change autocorrelation function and private autocorrelation 

function 

 

Source: Yahoo Finance, analysis is performed in software R 

By looking at Figure 2, the time series of Bitcoin price change (daily increment) is not characterized by 

autocorrelation, ACF values do not exceed the threshold values at any lag. The same is confirmed by the 

partial autocorrelation function - the values on all lags are within the limits. 

Fractal dimension - Box Count method 

Fractal dimension in time series analysis shows how much the time series repeats itself when we change 

the time series observation frame.  

          There are several approaches to estimating the fractal dimension. The simplest approach is the so-

called the method of "counting boxes", which involves dividing a time series (and any object in general) 

into equal-sized parts (in our case, quadrats) and then counting these quadrats. 

          As an illustrative example of this method, we can cite the Koch curve. The curve very much looks 

like a time series data although it is obtained by dividing the section into three equal parts, from which 

an equilateral triangle is formed in the middle, and it is repeated endlessly. 

In order to move on to the use of fractal dimension, we should look at the concept of similarity 

factor, which is the smallest unit of which any simple figure is comprised of, for example, a section, if 

we take a line with length L and divide it into N equal parts, then the similarity factor will be r(N) = 1/N. 
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Figure 3: Koch Curve 

 

Source: Created using software python, Turtle library 

 

Similarly if we divide a square with L sides into N quadrants, then the similarity factor will be r(N) = 

N^(-1/2). Thus, in case of cube, the similarity factor is N^(-1/3). As dimensions increase, the similarity 

factor follows the logic: r(N) = N^(-1/D). If we take the logarithm of both sides of the equation (Taylor, 

2018) we get the formula for fractal dimension: 

D = -log(N)/log(r(N)).             (1) 

As the theory suggests, the fractal dimension for Koch Curve should be: 

 

D = - log(4)/log(1/3) = 1.26.   (2) 

Calculating the similarity dimension for figures that do not have clearly defined similar shapes is 

impossible with the above-mentioned approach, so in such a case the box counting method is used. In 

order to validate the approach, lets calculate the fractal dimension of the same curve using box counting 

method by which a fractal dimension is defined as a coefficient of regression between logarithmic index 

of the number of quadrats (log(N)) in the figure and the inverse of the size of the square side  (ℓ - the 

side of the square) (log(1/ℓ)). 

          For this, we use the program ImageJ. This method later on will be used to calculate fractal 

dimensions for time series that we discussed in the beginning.  

 

Figure 4: Fractal dimension of the Koch curve 

 

                                       Source: analysis performed in Software Image J 
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As can be seen from Figure 4, the fractal dimension obtained by the box count method is very close to 

its theoretical value, therefore this approach will be used for further analysis. 

Fractal analysis of GEL/USD exchange rate and Bitcoin price 

Time series do not have perfect geometric characteristics. However, connecting dots on the time series 

graph form an object that we consider as fractal object. 

 
Figure 5: Log change of the GEL/USD exchange rate as a fractal object 

 

 
Source: National Bank of Georgia (image processed in Image j program) 

 

As can be seen in Figure 5, the exchange rate daily increment is represented as a geometric object/figure. 

Using the method described above, fractal dimension of the GEL/USD exchange rate is 1.43 (See Figure 

6). 
 

Figure 6: Fractal dimension of GEL/USD exchange rate (log change) 
 

 

Source: analysis performed in Software Image J 
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Similarly, we can consider a geometric representation of a time series of Bitcoin price changes and 

perform the same analysis.  

 

Figure 7: Fractal representation of Bitcoin price change 

 

 

Source: National Bank of Georgia (image processed in Image j program) 

Figure 8: Determining the Fractal Dimension of Bitcoin Price

 

Source: analysis performed in Software Image J 

As can be seen in Figures 7 and 8, the fractal time series of Bitcoin price change has a fractal dimension 

of 1.5171. 

Fractal dimension & Hurst Exponent 

There is the following relationship between the fractal dimension and the Hurst exponent: D = 2 – H 

(Hurst et al, 1965). This relationship will later on be used to define the correlation for the analyzed time 
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series. Furthermore, Thanks to this connection, we can calculate the Hurst exponent through the fractal 

dimension and vice versa which will help us define validity of the approach. 

          The Hurst exponent was developed by Harold Edwin Hurst. The value of the exponent is between 

0 – 1 and shows the presence or absence of long-term autocorrelation in the time series (Kantelhardt, 

2008).  

          In particular, if the H value is between 0.5 and 1, this indicates a positive autocorrelation in the 

time series, and in the opposite case - a negative autocorrelation. When H = 0.5, then the time series is 

not characterized by autocorrelation (Kantelhardt, 2008).  

          Due to the fact that the above-mentioned relationship between the fractal dimension and the Hurst 

exponent may not be absolutely accurate (Taylor, 2018), in each case the H value will be calculated 

separately by means of the "normalized size" method (Rescaled Range Analysis).  

           This method is the transforming a time series of length M as follows (Kantelhardt, 2008): 

N𝑖 = log (
Mi+1

Mi
)      , i = 1, 2, ..., (M - 1)    (3) 

After that, the time interval of the time series will be divided into T number of sub-periods of length j. 

Denoting each interval by t and each element included in it by Nk,t gives the average value for each sub-

period as follows: 

et =
1

j
∑ N𝑘, 𝑡

j
k=1 , k =  1, 2, , j    (4) 

In this way, we get the average value in each sub-period and calculate the average quadratic deviation 

for the same sub-periods: 

𝑆𝐼𝑡
=√∑ (N𝑖, 𝑡 −  𝑒𝑡)k

1

2
 ,   k =  1, 2, , j     (5) 

The maximum range in each sub-period will be calculated as follows: 

RIt
 = max(Xk,t) - min(Xk,t), 1 < k < j    (6) 

After that, the average R/S value for each subgroup is calculated: 

et =
1

T
∑

RIt

SIt

T
t=1 , k =  1, 2, , j         (7) 

As a result, by regressing the logarithmic value of the average R/S ratio obtained for each subgroup with 

the logarithm of the number of data included in each subgroup (log(n)), the value of H is obtained. 

Hurst exponent and fractal dimension 

Thanks to the relationship between the Hurst exponent and the fractal dimension, we can compare the 

results obtained by the two methods. Given the above methodology, the calculations for the USD/GEL 

exchange rate are as follows (see Table 1). 

 
Table 1: Calculation of the Hurst exponent of the USD/GEL exchange rate 

Number of Groups 2 4 8 16 32 64 128 256 512 

# of observations in sub groups 1024 512 256 128 64 32 16 8 4 

average R/S 21 21 23 25 32 40 49 48 65 

Log(R/S) 3 3 3 3 3 4 4 4 4 

Log(N) 7 6 6 5 4 3 3 2 1 

Hurst exponent 0.680         

Source of Data: National Bank of Georgia 
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As can be seen from Table 1, the Hurst exponent for the USD/GEL exchange rate is 0.68 units, which 

exceeds 0.5 and indicates a positive long-term correlation in the time series. By using the relationship D 

= 2 – H, we get that the fractal dimension determined in this way is 1.32 units, which is slightly different 

from the result obtained by the box counting method - 1.43. 

In order to check the accuracy of the obtained indicator, we will conduct a t-test. 

 
Table 2: Testing Hurst's exponent for equality with 0.5 

 

Hurst exponent 0.68 

Standard Deviation 0.14 

Threshold 0.50 

t-test 1.30 

Number of Observations 9 

Degree of freedom 7 

P-value 0.236 

Source of Data: National Bank of Georgia 

As it can be seen from the obtained test results, we cannot reject the null hypothesis that the value of the 

obtained Hurst exponent is equal to 0.5. Which says that the data does not show long-term correlation.  

          Nevertheless, the value of 0.68 is greater than the value of 0.5, which is indicative of small 

autocorrelation. Also, as shown by the autocorrelation function, the time series is characterized by 

autocorrelation. 

          Similarly, let's conduct an analysis in the case of the price of Bitcoin. As in the previous case, the 

number of observation points in this case is 2048, which allows us to create 9 subgroups and perform the 

corresponding analysis. 

 
Table 3: Calculation of Hurst Exponent of Bitcoin Price 

 
Number of Groups 2 4 8 16 32 64 128 256 512 

Number of observations in sub groups 1024 512 256 128 64 32 16 8 4 

Average R/S 15 16 16 17 17 18 20 20 23 

log(R/S) 3 3 3 3 3 3 3 3 3 

Log(N) 7 6 6 5 4 3 3 2 1 

Hurst exponent 0.575         

Source of Data: Yahoo Finance 

As can be seen from Table 3, the value of the Hurst exponent is 0.575, which is close to 0.5 telling us 

that there is no long-term autocorrelation process in the time series (ACF also confirmed the same). 

Similarly, we can also calculate the fractal dimension by using obtained value of Hurst exponent: 2-0.575 

= 1.425, which is slightly different from the value obtained using the method of counting boxes – D= 

1.517, thus fractal dimension seems to be right.  

mailto:editor@iem.ge
https://iem.ge/ojs/index.php/journal/home


 

International Scientific Journal Innovative Economics and Management  

E-ISSN:2449-2604 editor@iem.ge 
htpp://iem.ge 

Vol 11 No1.2024 
 

 

37 

 

          Both values indicate the absence of long-term autocorrelation in the time series, which means that 

the price of Bitcoin is solely formed by random events, which makes it difficult to predict. 

To test the hypothesis that the mean of Hurst exponent is equal to 0.5, we again perform the t test. 

 
Table 2: Testing Hurst's exponent for equality with 0.5 

 

Hurst exponent 0.57 

Standard deviation 0.10 

Threshold 0.50 

t-test value 0.76 

Number of Observations 9 

Degree of freedom 7 

P-value 0.473 

Source of Data: Yahoo Finance 

T statistic proves the point and we cannot reject the hypothesis that Hurst's exponent equal to 0.5 with a 

fairly large P value. 

Conclusions 

Based on the analysis, we can say that price of Bitcoin is less dependent on previous values, it is formed 

by random factors, and therefore it is very difficult to predict. This result was fairly simple and expected, 

however fractal analysis proves to be effective in measuring the correlation.  

          In the case of the exchange rate, the time series is correlational object, the future values are highly 

dependent on past values. Although the T statistics for Hurst’s exponent suggested the opposite, still, the 

t-value was significantly higher than the threshold indicating the autocorrelation in the data. Nonetheless, 

using fractal dimensions as a measure for correlation in a time series data, might not be fully reliable 

method if used without combination with other methods and pre-knowledge about the data.                                                                    
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